

General Robotics & Autonomous Systems and Processes

Mechatronic Modeling and Design with Applications in Robotics

Graphical Models

Basic Components of Block Diagrams

Parallel Form

Page 6 of 23

Feedback Form: Eliminating a Feedback Loop

Page 7 of 23

$$\begin{array}{c|c}
R(s) & G(s) & C(s) \\
\hline & 1 + G(s)H(s) & \end{array}$$

Moving Blocks to Create Familiar Forms

Page 8 of 23

Moving a Summing Junction

Moving a Pickoff Point

Page 10 of 23

Signal Flow Graph

Definition

A system is represented by a line with an arrow showing the direction of signal flow through the system.

Loop Gain:

The product of branch gains found by traversing a path that starts at a node and ends at the same node, following the direction of the signal flow, without passing through any other node more than once.

Forward-path Gain:

The product of gains found by traversing a path from the input node to the output node of the signal-flow graph in the direction of signal flow.

Non-touching Loops:

Loops that do not have any nodes in common.

Non-Touching-Loop Gain:

The product of loop gains from non-touching loops taken two, three four, or more at a time

G.G.2 G364 G6 G7

Non-touching Loops:

Gath Gatz Gatasts Gatobis.

Non-Touching-Loop Gain: $[G_{3}H_{1}][G_{4}H_{2}]$ $[G_{3}H_{1}][G_{4}H_{2}]$ $[G_{3}H_{1}][G_{4}G_{5}H_{3}]$

Mason's Rule

- k = number of forward paths
- T_k = the *k*th forward-path gain
- $\Delta = 1 \Sigma \text{ loop gains} + \Sigma \text{ non-touching loop gains}$ taken two at a time - Σ non-touching loop grains taken three at a time + Σ non-touching loop gains taken four at a time ...
- $\Delta_k = \Delta \Sigma$ loop gain terms in Δ that touch the *k*th forward path. In other words, Δ_k is formed by eliminating from Δ those loop gains that touch the *k*th forward path.

Find the transfer function, C(s)/R(s) for the signal-flow-graph:

Signal-Flow Graphs of State Equations

where *r* is the input, *y* is the output, x_1 , x_2 and x_3 are the state variables, please draw its signal-flow graph.

The End!!